Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
EC Microbiol ; 18(4): 1-12, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1990183

ABSTRACT

Brilacidin (PMX-30063), a non-peptide defensin-mimetic small molecule, inhibits SARS-CoV-2 viral infection but the anti-viral mechanism is not defined. Here we determined its effect on the specific step of the viral life cycle. Brilacidin blocked SARS-CoV-2 infection but had no effect after viral entry. Brilacidin inhibited pseudotyped SARS-CoV-2 viruses expressing spike proteins from the P.1 Brazil strain and the B.1.1.7 UK strain. Brilacidin affected viral attachment in hACE2-dependent and independent manners depending on the concentrations. The inhibitory effect on viral entry was not mediated through blocking the binding of either the spike receptor-binding domain or the spike S1 protein to hACE2 proteins. Taken together, brilacidin inhibits SARS-CoV-2 infection by blocking viral entry and is active against SARS-CoV-2 variants.

2.
J Med Virol ; 94(5): 2188-2200, 2022 05.
Article in English | MEDLINE | ID: covidwho-1648458

ABSTRACT

Brilacidin, a mimetic of host defense peptides (HDPs), is currently in Phase 2 clinical trial as an antibiotic drug candidate. A recent study reported that brilacidin has antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by inactivating the virus. In this study, we discovered an additional mechanism of action of brilacidin by targeting heparan sulfate proteoglycans (HSPGs) on the host cell surface. Brilacidin, but not acetyl brilacidin, inhibits the entry of SARS-CoV-2 pseudovirus into multiple cell lines, and heparin, an HSPG mimetic, abolishes the inhibitory activity of brilacidin on SARS-CoV-2 pseudovirus cell entry. In addition, we found that brilacidin has broad-spectrum antiviral activity against multiple human coronaviruses (HCoVs) including HCoV-229E, HCoV-OC43, and HCoV-NL63. Mechanistic studies revealed that brilacidin has a dual antiviral mechanism of action including virucidal activity and binding to coronavirus attachment factor HSPGs on the host cell surface. Brilacidin partially loses its antiviral activity when heparin was included in the cell cultures, supporting the host-targeting mechanism. Drug combination therapy showed that brilacidin has a strong synergistic effect with remdesivir against HCoV-OC43 in cell culture. Taken together, this study provides appealing findings for the translational potential of brilacidin as a broad-spectrum antiviral for coronaviruses including SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 229E, Human , Coronavirus OC43, Human , Antiviral Agents/pharmacology , Guanidines , Humans , Pyrimidines , SARS-CoV-2
3.
Viruses ; 13(2)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1128060

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than two million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin-a de novo designed synthetic small molecule that captures the biological properties of HDPs-on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is likely to be a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 against different strains of the virus in cell culture.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Guanidines/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , COVID-19/virology , Cell Culture Techniques , Cell Line , Chlorocebus aethiops , Defensins/pharmacology , Humans , Peptidomimetics/pharmacology , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL